

Presentation Outline

- I. Pertussis overview
- II. Lab testing: Perils and pitfalls
- III. Recent trends
- IV. Control measures

Pertussis

- Highly contagious respiratory infection
- Spread by coughing or sneezing
 ->80% household contacts infected
- · Caused by bacteria Bordatella pertussis
 - Attach to the cilia in upper respiratory tract
 - Release toxins, damage cilia and cause inflammation

Stages of Pertussis

Stage	Length	Clinical Features
Catarrhal	7–10 days; range 4–21	Runny nose, mild cough
Paroxysmal	1–6 weeks; up to 10	Paroxysmal cough
Convalescent	7–10 days; range 4–21	Less persistent cough; secondary infxn

Clinical Case Definition

- Cough illness lasting at least 2 weeks with one of the following:
 - Paroxysms of coughing
 - Inspiratory "whoop"
 - Post-tussive vomiting

Images of Pertussis

Source: www.immunize.org, courtesy of Thomas Schlenker, MD, MPH, Chief Medical Officer, Children's Hospital of Wisconsin and the Pennsylvania Chapter of the American Academy of Pediatrics

Infant PertussisImage: ShotePrevention.com: Bridge: State And State Another Street State State Another Street State State Another Street State State Another State State Another State State State Another State State State Another State S

	Pertussis Tests		
TEST	PROS	CONS	
PCR	•Sensitive •Fast	•False positives	
Culture	•Specific •Gold standard	•Slow •Low sensitivity	
Serology	•Detect late after onset	•Not standardized	
DFA	•None (in 2012)	•Low sensitivity	

Pertussis PCR Pitfalls

- · False positives
 - Testing patients without signs/symptoms
 - Contamination of swab with vaccine DNA
- False negatives
 - Testing too late in illness
 - Improper specimen collection

Pertussis Culture

- · High specificity
- Low sensitivity after first two weeks of cough
- · Long time to results
- Important for
 - Control measures in outbreak settings
 - Antimicrobial resistance testing

The "Pertussis Epidemic that Wasn't"

Faith in Quick Test Leads to Epidemic That Wasn't

*New York Times, January 22, 2007

- 134 cases
- No positive cultures
- Confirmatory testing showed no evidence of a pertussis outbreak
- Outbreak of mild respiratory disease with no single etiology

Adapted from Lauri Hicks, CDC, March 17, 2008

Pertussis Labs: Take Home

- · There is no perfect test
- Need to educate clinicians about appropriate PCR testing
- Send swabs for culture confirmation to avoid "pseudo-outbreaks"
- · Limited role for serologies, DFA

Trends / Burden of Disease

• 30–50 million cases, 300,000 deaths per year worldwide

Pertussis Trends, 2012

- National
 - 41,880 cases reported
 - 15 infant deaths
 - Highest number of cases since 1955
- North Carolina
 - 625 cases reported
 - 20% from Alamance outbreak
 - -65 counties with cases

Provisional data; subject to change

- · Most effective way to prevent pertussis
- DTP (1940s) and DTaP (1990s) for infants and children
- Tdap (2005) for pre-teens, teens and adults

		Pertussis	
Vaccination Status	Case	Control	 OR (95% CI) *
Jnvaccinated	53	19	8.9 (4.9 – 16.1)
5 DTaP doses	629	1,997	

Overall	Vaccine	Effectiveness —	California, 2010
---------	---------	-----------------	------------------

Model *	Case (n)	Control (n)	VE, %	95% CI
Overall VE, All Ages				
0 dose	53	19	Ref	
5 doses	629	1,997	88.7	79.4 – 93.8
Time since 5 th dose				
0 doses	53	19	Ref	
< 12 months	19	354	98.1	96.1 – 99.1
12 – 23 months	51	391	95.3	91.2 – 97.5
24 – 35 months	79	366	92.3	86.6 – 95.5
36 – 47 months	108	304	87.3	76.2 – 93.2
48 – 59 months	141	294	82.8	68.7 – 90.6
60+ months	231	288	71.2	45.8 – 84.8

Model *	Case (n)	Control (n)	VE, %	95% CI
Overall VE, All Ages				
0 dose	53	19	Ref	
5 doses	629	1,997	88.7	79.4 – 93.8
Time since 5 th dose				
0 doses	53	19	Ref	
< 12 months	19	354	98.1	96.1 – 99.1
12 – 23 months	51	391	95.3	91.2 – 97.5
24 – 35 months	79	366	92.3	86.6 - 95.5
36 – 47 months	108	304	87.3	76.2 – 93.2
48 – 59 months	141	294	82.8	68.7 – 90.6
60+ months	231	288	71.2	45.8 - 84.8

Tdap: Recommendations

- Adolescents 11–18
 - Preferably at age 11-12
- Adults ≥19, especially if in close contact with infants
- Children 7–10 who are not fully immunized against pertussis

32

Tdap: Effectiveness and Duration

- Effectiveness 66–78% in field observational studies
- Preliminary data suggest effectiveness wanes within 3–4 years among acellular recipients

http://www.cdc.gov/vaccines/acip/meetings/downloads/slides-feb-2013/03-Pertussis-Clark.pdf

Tdap: Recent Changes

- · Recently approved for
 - Pregnant women
 - People ≥65 years of age
- Expectant mothers should receive Tdap during each pregnancy, preferably at 27– 36 weeks

Pertussis Vaccines: Take Home

- · Best way to prevent pertussis
 - Decreased severity, duration, and infectivity with breakthrough cases
- DTaP and Tdap protection wanes within 5 years
 - Likely contributor to increasing incidence, especially among children 7–10
 - Highlights need for booster doses

Post-Exposure Prophylaxis (PEP)

• Primary objective: Prevent death and serious complications in individuals at increased risk of severe disease

Post-Exposure Prophylaxis (PEP)

- No data to indicate that widespread use of PEP effectively controls or limits the scope of pertussis outbreaks
- · Concerns re: overuse of antibiotics

Who Gets PEP?

- All household contacts
- Close contact at high risk for severe illness

 Infants, women in 3rd trimester
 - Those with pre-existing health conditions that may be exacerbated by a pertussis infection
- Close contact who are themselves in close contact with a someone else at high risk for severe illness

Who Gets PEP?

- <u>All contacts in high risk settings that</u> include infants aged <12 months or women in the third trimester of pregnancy
- · Examples:
 - Neonatal intensive care units
 - Childcare settings
 - Maternity wards

Broader Use of PEP?

- · Consider in situations with
 - Small number of cases
 - Limited closed settings
 - No ongoing, community-wide outbreak
- · Consultation with health department

Summary

- Pertussis is an increasing problem
 - Increasing incidence likely related to shorter duration of immunity with current vaccines
- There is no perfect test for pertussis
- Vaccination is the best tool for prevention, but we need for new strategies for prevention and response

Acknowledgments

 Some slides adapted from Stacey Martin, MSc : "Coughing up the Facts on Pertussis – Emerging Trends and Vaccine Recommendations", available at <u>http://www.cdc.gov/vaccines/ed/ciinc/Pertu</u> <u>ssis.htm</u>

Vaccine Preventable Diseases: Transition from NC Immunization Branch to Communicable Disease Branch

Why?

- Increased responsibility for site visits
- Increased complexities in diseases

Benefits

- One place to call
- Physician support
- Etc., Etc., Etc.,

Who to call?

Communicable Disease Branch:

- Vaccine Preventable
 Disease control and
 outbreak support
- Immunization Branch:
- Vaccine clinical questions
- Ordering, storage, and handling
- Coverage criteria